Hospital superbug breakthrough: Antibacterial gel kills Pseudomonas aeruginosa, staphylococci and E.coli using natural proteins

0
148

Catheter in arm (stock image). When bacteria attach to surfaces, including medical implants, they produce a jelly-like substance called the biofilm — a protective layer is almost impossible for current antibiotics to penetrate through.
Credit: © freepeoplea / Fotolia

Scientists at Queen’s University Belfast have made a breakthrough in the fight against the most resistant hospital superbugs.

The team from the School of Pharmacy at Queen’s have developed the first innovative antibacterial gel that acts to kill Pseudomonas aeruginosa, staphylococci and E.coli using natural proteins.

The gels have the ability to break down the thick jelly-like coating, known as biofilms, which cover bacteria making them highly resistant to current therapies, while leaving healthy cells unaffected.

Dr Garry Laverty, from the School of Pharmacy at Queen’s University, and lead researcher, said: “When bacteria attach to surfaces, including medical implants such as hip replacements and catheters, they produce a jelly-like substance called the biofilm. This protective layer is almost impossible for current antibiotics to penetrate through. Therefore bacteria deep within this protective layer are resistant as they remain unexposed to the therapy. They grow and thrive on surfaces to cause infections that are very difficult to treat. The only option is often to remove the medical implant leading to further pain and discomfort for the patient. Our gels would prevent this.

“Our gels are unique as they target and kill the most resistant forms of hospital superbugs. It involves the use of gels composed of the building blocks of natural proteins, called peptides. The same ingredients that form human tissue. These molecules are modified slightly in the laboratory to allow them to form gels that will rapidly kill bacteria. This is further evidence of Queen’s research advancing knowledge and changing lives.”

The new approach, which was developed as part of an international collaboration between the School of Pharmacy at Queen’s and the School of Chemistry at Brandeis University, Waltham, USA, is published in the journal Biomacromolecules next month.

The results will form part of a presentation delivered by Dr Laverty at the Academy of Pharmaceutical Sciences, UK PharmSci: The Science of Medicines conference at the University of Hertfordshire on the 8th September 2014.


Story Source:

The above story is based on materials provided by Queen’s University, Belfast. Note: Materials may be edited for content and length.


Journal Reference:

  1. Garry Laverty, Alice P. McCloskey, Brendan F. Gilmore, David S. Jones, Jie Zhou, Bing Xu. Ultrashort Cationic Naphthalene-Derived Self-Assembled Peptides as Antimicrobial Nanomaterials. Biomacromolecules, 2014; 140807094711008 DOI: 10.1021/bm500981y